# Consultas Conjuntas de SQL y Vectores

MyScale combina la potencia de SQL y los vectores para tus cargas de trabajo de datos de IA. Puedes ejecutar consultas complejas de SQL tradicional y de vectores en tus datos no estructurados (vectorizados) y estructurados utilizando la biblioteca completa de sintaxis intuitiva de SQL, lo que permite realizar operaciones de análisis de datos rápidas y eficientes.

# SQL + Vector: ¿Por qué es importante?

La importancia de las consultas conjuntas de SQL tradicional y vectores radica en su capacidad para combinar datos estructurados y vectores de incrustación (datos) para abordar consultas complejas y analizar datos de alta dimensión de manera unificada y eficiente. Este enfoque ofrece varios beneficios y capacidades:

  • Trabajar con más tipos de datos y funciones: MyScale puede almacenar y consultar datos vectoriales de alta dimensión y cualquier metadato que puedas imaginar. Esta integración perfecta permite a los usuarios diseñar y ejecutar consultas y análisis de datos más complejos. El uso de modelos de IA y datos empresariales beneficia la toma de decisiones al proporcionar una perspectiva más completa de los datos.

  • Búsqueda híbrida: La combinación de búsqueda semántica con la coincidencia de palabras clave tradicional en la búsqueda híbrida supera el desafío de la cobertura semántica insuficiente en documentos vectorizados. Es especialmente beneficioso para localizar palabras raras o cuando un usuario tiene la intención de buscar términos específicos. Además, la base para la búsqueda híbrida se establece a través de consultas conjuntas de SQL y vectores.

  • Lenguaje de consulta unificado: SQL es un lenguaje de consulta de bases de datos ampliamente utilizado por muchos desarrolladores y analistas de datos. Los usuarios pueden integrar sin problemas la sintaxis que ya conocen al combinar la búsqueda de SQL y vectores en una sola consulta, eliminando la necesidad de aprender nuevos lenguajes de consulta.

  • Recuperación eficiente de datos: Los datos vectorizados (no estructurados) y estructurados a menudo requieren índices vectoriales especializados y algoritmos de búsqueda para una recuperación eficiente y efectiva. Al combinar la búsqueda de SQL y vectores en una sola consulta, el motor de MyScale puede realizar búsquedas relacionadas con vectores y optimizar los planes de ejecución de consultas, recuperando datos de manera más rápida y eficiente.

    TIP

    Para ver un ejemplo de cómo recuperar datos de manera efectiva, visita Aplicaciones avanzadas: Diseño de consultas.

  • Optimización de flujos de trabajo de datos: MyScale proporciona una solución de datos unificada, desde SQL nativo hasta consultas de búsqueda de vectores. Los usuarios de SQL pueden ampliar sus consultas con búsquedas de vectores, mientras que los usuarios de búsqueda de vectores pueden almacenar sus metadatos en tablas bien estructuradas.

En resumen, el SQL tradicional, junto con las consultas de vectores, puede manejar y analizar datos vectoriales de alta dimensión, ampliando los dominios de aplicación de las bases de datos y proporcionando capacidades mejoradas de análisis de datos. Esto es significativo para numerosas disciplinas, incluyendo el aprendizaje automático, la ciencia de datos, el procesamiento de imágenes y más.

TIP

Consulta Aplicaciones de muestra y Aplicaciones avanzadas para comprender de manera exhaustiva la naturaleza robusta de las consultas de SQL tradicionales y la búsqueda de vectores.

# Uso de SQL + Vector: Una demostración basada en ChatData

ChatData, una aplicación de chat de LLM, ofrece una eficiencia y precisión incomparables al interactuar con tus documentos. Los potentes filtros de metadatos y las capacidades avanzadas de búsqueda de vectores simplifican la respuesta a preguntas sobre datos de dominio.

TIP

Con ChatData, puedes interactuar sin problemas con millones de documentos, incluyendo artículos académicos, y encontrar lo que necesitas de manera rápida y sencilla. Ya seas investigador, estudiante o entusiasta del conocimiento, explorar artículos académicos y documentos de investigación nunca ha sido tan fácil como con ChatData. Desbloquea el verdadero potencial de la recuperación de información con ChatData y descubre un mundo de conocimiento al alcance de tus dedos.

La siguiente sección describe cómo crear una demostración en MyScale basada en la implementación de recuperación de consultas de ChatData y demuestra cómo ejecutar consultas conjuntas de SQL y vectores.

# Creación de las tablas de la base de datos

Esta aplicación de muestra utiliza una biblioteca de documentos que contiene datos de artículos académicos (en vectores) almacenados y recuperados al realizar consultas. Ejecuta las siguientes declaraciones de SQL para crear tablas relacionales para la biblioteca de documentos en el Espacio de Trabajo de SQL de MyScale.

# La tabla chatPDF

Esta tabla almacena datos de texto de párrafos extraídos de PDF en la biblioteca de documentos en los siguientes campos:

  1. id: El ID del párrafo
  2. pdf (SHA256): El ID del PDF correspondiente
  3. content: El contenido del párrafo
  4. section: La sección a la que pertenece el párrafo
  5. page: El número de página
  6. vector: El vector de características del párrafo
CREATE TABLE default.chatPDF (
    `id` String,
    `pdf` String,
    `content` String,
    `section` String,
    `page` Int32,
    `vector` Array(Float32),
    VECTOR INDEX vec_idx vector TYPE MSTG('metric_type=Cosine'),
    CONSTRAINT vec_len CHECK length(vector) = 512)
ENGINE = ReplacingMergeTree ORDER BY id SETTINGS index_granularity = 8192;

# La tabla chatPDF_meta

Esta tabla almacena información de metadatos vinculada a los archivos PDF de la biblioteca de documentos en los siguientes campos:

  1. pdf (SHA256): El ID del PDF
  2. title: El título del PDF
  3. authors: El/los autor(es) del PDF
  4. abstract: El resumen del PDF
  5. pub_date: Fecha de publicación
  6. doi: El DOI (Identificador de Objeto Digital) del documento - https://doi.org (opens new window)
  7. publisher: El editor del documento
  8. article_type: El tipo/categoría del artículo - {'arXiv', 'Finance'}
  9. vector: El vector de características del resumen del párrafo
CREATE TABLE default.chatPDF_meta (
    `pdf` String,
    `title` String,
    `authors` Array(String),
    `abstract` String,
    `pub_date` Nullable(Date32),
    `doi` String,
    `publisher` String,
    `article_type` String,
    `vector` Array(Float32),
    VECTOR INDEX vec_idx vector TYPE MSTG('metric_type=Cosine'),
    CONSTRAINT vec_len CHECK length(vector) = 512)
ENGINE = ReplacingMergeTree ORDER BY pdf SETTINGS index_granularity = 8192;

# La tabla chatPDF_ref

Esta tabla almacena información sobre las referencias citadas en los archivos PDF de la biblioteca de documentos en los siguientes campos:

  1. pdf (SHA256): ID del PDF citado
  2. title: Título del artículo referenciado
  3. authors: Autor(es) del artículo referenciado
  4. journal: Resumen del artículo referenciado
  5. year: Año de publicación del artículo referenciado
CREATE TABLE default.chatPDF_ref (
    `title` String,
    `pdf` String,
    `journal` String,
    `authors` Array(String),
    `year` Nullable(Date32))
ENGINE = ReplacingMergeTree ORDER BY title SETTINGS index_granularity = 8192;

# La tabla chatPDF_user

Esta tabla almacena los permisos de acceso de los usuarios de la biblioteca de documentos para todos los documentos PDF en los siguientes campos:

  1. id: ID de la Lista de Control de Acceso (ACL, por sus siglas en inglés)
  2. user: Usuario de la ACL
  3. pdf: Códigos de documentos PDF de la ACL a los que el usuario puede acceder
CREATE TABLE default.chatPDF_user (
    `id` String, 
    `user` String, 
    `pdf` String) 
ENGINE = ReplacingMergeTree ORDER BY id SETTINGS index_granularity = 8192;

TIP

Si un usuario tiene privilegios de acceso a varios documentos PDF, habrá múltiples filas de registros en la tabla chatPDF_user asociadas con dicho usuario.

# Realizar consultas conjuntas de SQL y vectores

Utilizando estas tablas de base de datos, ilustraremos cómo ejecutar de manera eficiente consultas conjuntas de SQL y vectores que satisfacen los requisitos de recuperación.

# Caso de uso 1: Recuperar artículos relevantes de una colección de archivos PDF

Este escenario tiene como objetivo recuperar los PDF y sus títulos de la tabla chatPDF que cumplan las siguientes condiciones:

  • El usuario es "default" o "test"
  • Los autores incluyen nombres como "Cedar"
  • El orden se determina en función de la distancia al vector de consulta, que representa similitudes semánticas

Para recuperar los datos que cumplen estas condiciones, ejecuta la siguiente declaración de SQL:

SELECT content, section, page, title, pdf
FROM chatPDF
JOIN chatPDF_meta ON chatPDF.pdf = chatPDF_meta.pdf
WHERE pdf IN (
    SELECT pdf FROM chatPDF_user
    JOIN chatPDF_meta ON chatPDF_user.pdf = chatPDF_meta.pdf
    WHERE user IN ('default', 'test') AND match(arrayStringConcat(authors, ';'), '(?i)(;Ceder\s|\sCeder;)')
)
GROUP BY content, section, page, d, title, pdf
ORDER BY distance(chatPDF.vector, [0.026999086141586304,0.031650662422180176,0.013864615000784397,-0.053247902542352676,0.06827133148908615,-0.07262341678142548,0.05043990910053253,0.0013820948079228401,-0.008540806360542774,-0.0002308133989572525,0.06593822687864304,-0.040088851004838943,0.0065822964534163475,-0.03170497715473175,-0.008417543955147266,0.02299412712454796,-0.051368385553359985,0.008389266207814217,-0.079441137611866,0.02974756620824337,0.016738949343562126,0.06552143394947052,-0.0015636092284694314,-0.027125705033540726,0.050242915749549866,0.01254260167479515,-0.0029571610502898693,-0.10734105110168457,-0.0828493982553482,-0.026928286999464035,0.045929133892059326,0.0008282766793854535,-0.054626185446977615,0.030738720670342445,0.03874953091144562,0.008306861855089664,0.021981295198202133,0.022476540878415108,-0.0060426779091358185,0.02391696535050869,0.030219828709959984,0.04619702696800232,-0.06530780345201492,0.07061367481946945,0.05533526837825775,-0.003080346155911684,-0.02253931388258934,0.06256599724292755,-0.0776442363858223,0.01975518837571144,-0.027114108204841614,0.04596388712525368,0.02279621735215187,0.002945868531242013,-0.0015898416750133038,0.05462668836116791,-0.05107376351952553,-0.07294963300228119,-0.03645467385649681,-0.004737087991088629,-0.07179401814937592,0.007904154248535633,-0.033034853637218475,-0.039946116507053375,-0.003957211971282959,0.01979912631213665,0.03920338302850723,0.023198742419481277,-0.0038021851796656847,-0.1061340942978859,-0.07258614897727966,0.006566578987985849,-0.023369908332824707,0.028178321197628975,-0.04091496765613556,-0.026457346975803375,-0.004802894312888384,-0.031243516132235527,0.060932084918022156,0.05338958278298378,-0.026067456230521202,-0.012777717784047127,0.030694443732500076,-0.016132811084389687,0.01813514158129692,0.03305035084486008,0.028796397149562836,0.030067002400755882,-0.009653291665017605,0.027696458622813225,-0.00048651263932697475,-0.024008505046367645,0.06732442229986191,0.003604266094043851,0.05211661383509636,0.07432989031076431,0.06776303052902222,-0.042032644152641296,0.017074251547455788,0.04724365472793579,-0.0001555848866701126,0.07640675455331802,-0.035054367035627365,0.018668806180357933,0.06374965608119965,0.02925926260650158,-0.009556514210999012,0.01306259073317051,-0.036391548812389374,0.0034884687047451735,-0.04396089166402817,-0.04594021290540695,0.0015791639452800155,-0.0009103559423238039,-0.004307177383452654,0.054940417408943176,-0.05315075442194939,0.08367597311735153,0.013729246333241463,-0.014523754827678204,-0.03446390479803085,0.0708846002817154,0.06853380054235458,-0.02094944939017296,-0.05946700647473335,-0.034937113523483276,0.06845465302467346,-0.029673170298337936,-0.01334450114518404,0.02043166197836399,-0.04104345664381981,-0.04891224578022957,-0.014508051797747612,-0.050760507583618164,-0.0650150254368782,0.02871553786098957,-0.05221206694841385,0.08540071547031403,-0.04675278440117836,0.0615418404340744,-0.007765837479382753,0.028126856312155724,-0.005272290203720331,-0.04655084013938904,0.018804281949996948,0.09398901462554932,-0.004436886869370937,-0.04573441669344902,0.04369768500328064,-0.020836740732192993,0.02849348448216915,0.026714829728007317,0.04603387787938118,0.03234457969665527,-0.0032120163086801767,-0.00720333494246006,0.0237945057451725,0.05746796354651451,0.10711528360843658,-4.9354974180459976e-05,-0.07700524479150772,0.015967318788170815,0.008455992676317692,0.05179617926478386,0.04583102464675903,-0.034291986376047134,0.04876098781824112,0.05868189036846161,-0.00832947064191103,-0.008326420560479164,0.0743461474776268,-0.03880206495523453,0.11520592123270035,0.03293044492602348,0.05199345201253891,-0.029571393504738808,-0.051465485244989395,-0.014250459149479866,-0.015538709238171577,-0.05069621652364731,-0.004608175717294216,0.022481797263026237,-0.01984306238591671,-0.006090227980166674,-0.034103717654943466,0.04855476692318916,-0.02658236399292946,-0.0038069162983447313,-0.04663381725549698,-0.011598984710872173,-0.01801265776157379,0.04226880893111229,0.0677245631814003,-0.017390063032507896,-0.0019030668772757053,0.10509350150823593,-0.021937070414423943,-0.009788216091692448,0.03744519129395485,0.001477006240747869,-0.017919331789016724,-0.026724155992269516,0.039193011820316315,-0.024180298671126366,-0.06452587991952896,-0.0035215539392083883,0.005589423701167107,0.05701106786727905,0.049469269812107086,0.00446392223238945,-0.0261820238083601,-0.01770012080669403,0.058718081563711166,-0.0048060487024486065,-0.006102082319557667,0.005824038293212652,0.052870433777570724,0.010728297755122185,0.035200126469135284,-0.07551974803209305,-0.051468122750520706,-0.007006988860666752,0.004533618222922087,-0.028034832328557968,-0.006710531190037727,-0.028786277398467064,0.05626194551587105,0.010266546159982681,0.031754035502672195,0.03694238141179085,0.025284932926297188,-0.03397466614842415,-0.011790627613663673,0.04270120710134506,0.0014999251579865813,-0.024694599211215973,-0.025497794151306152,0.06993667036294937,0.03870249539613724,0.00010579009540379047,0.03504638001322746,0.025572344660758972,-0.004730174783617258,0.04920973256230354,-0.07639332860708237,-0.02675638534128666,-0.10298098623752594,0.0317358560860157,-0.030814286321401596,-0.04177673161029816,-0.0030244854278862476,0.001605249010026455,-0.04100067913532257,0.011919977143406868,0.013938448391854763,-0.014999412931501865,-0.018616221845149994,0.0035378083121031523,-0.0003974463033955544,0.03007170371711254,0.033498045057058334,-0.014186926186084747,-0.06717824190855026,-0.05676146596670151,-0.002536509186029434,-0.012216432020068169,-0.03274456039071083,-0.07016073912382126,0.027928130701184273,-0.006023918278515339,-0.014584201388061047,0.02828258089721203,0.01605045609176159,0.013603655621409416,-0.03165196627378464,0.02176736667752266,0.015294879674911499,0.03909007087349892,-0.03221159055829048,-0.02703136019408703,-0.015480686910450459,-0.06110067665576935,-0.0406932570040226,0.010359122417867184,-0.032171376049518585,-0.05194094404578209,0.02039448358118534,0.03945254161953926,0.0063950917683541775,-0.07735629379749298,0.013408828526735306,-0.04082614183425903,0.004937610123306513,-0.013532319106161594,0.02098943293094635,0.046174533665180206,0.05722230672836304,0.03884165361523628,-0.028747886419296265,-0.027442697435617447,0.020229991525411606,0.04540535807609558,-0.028022319078445435,0.04311973229050636,0.012806595303118229,0.04239150136709213,0.02941069006919861,-0.006360919214785099,0.015810860320925713,0.04363419860601425,-0.02934212051331997,0.010519737377762794,0.03338617458939552,-0.03972255066037178,0.03444833308458328,0.11895830929279327,-0.001475695869885385,0.09342533349990845,0.01004725694656372,0.00521648395806551,0.009570184163749218,0.037115368992090225,-0.014191587455570698,-0.029996715486049652,0.05852231755852699,0.003670441685244441,-0.03111087717115879,-0.007686744909733534,-0.00878136232495308,0.015304391272366047,-0.00835162028670311,0.014680332504212856,-0.06027398630976677,-0.044898197054862976,-0.031150352209806442,0.04225290194153786,-0.05963743478059769,-0.049651917070150375,0.0015495388070121408,0.0460234172642231,-0.09391812980175018,0.0565929152071476,-0.014345213770866394,-0.006359162740409374,0.014748381450772285,0.05111211538314819,0.004764666315168142,-0.0023365227971225977,-0.03408080339431763,-0.034600626677274704,-0.05124702304601669,-0.017525795847177505,-0.004975790157914162,-0.023927779868245125,-0.06676872819662094,-0.028322583064436913,0.013797154650092125,-0.01374990213662386,-0.035827670246362686,-0.026726802811026573,-0.0036591251846402884,-0.04383886978030205,-0.039545685052871704,-0.021230548620224,-0.0028415226843208075,-0.011543807573616505,-0.015424227342009544,-0.011197403073310852,0.04764008894562721,0.0227516982704401,-0.004535396117717028,0.0235084667801857,0.006367370020598173,-0.012380723841488361,0.06436987966299057,-0.006682234350591898,-0.010924633592367172,0.002654495881870389,0.04149286076426506,0.00090180360712111,0.06268277764320374,-0.04713604599237442,-0.01889045350253582,0.009414365515112877,0.04259977862238884,0.03397039324045181,0.02849150076508522,-0.027262089774012566,-0.0218980610370636,0.003047373378649354,0.023192720487713814,-0.016982559114694595,-0.020740406587719917,0.008828762918710709,-0.0809066966176033,-0.084974005818367,-0.022028392180800438,-0.002516932552680373,-0.042008355259895325,-0.021305542439222336,-0.04327180236577988,0.005354521330446005,0.0004744822799693793,-0.05184450000524521,-0.08057332038879395,-0.025101900100708008,0.018032586202025414,0.008285390213131905,-0.01446616742759943,-0.04705870524048805,0.09355530887842178,-0.003802527906373143,-0.02881501242518425,-0.0532359704375267,-0.02586442232131958,0.05022677779197693,-0.0856320932507515,-0.020890625193715096,0.028313474729657173,-0.05678088963031769,-0.016457537189126015,0.010364792309701443,0.0092974454164505,0.011288127861917019,0.008098184131085873,0.01191268302500248,-0.026048999279737473,-0.0014207729836925864,-0.025333549827337265,-0.01913163997232914,-0.021867400035262108,-0.03406573086977005,0.04469537362456322,-0.028908485546708107,0.010367023758590221,0.031788188964128494,0.014998797327280045,0.042763058096170425,-0.03708334639668465,0.01386157888919115,-0.08847704529762268,-0.07643768936395645,-0.002707232255488634,0.03341418504714966,-0.028400259092450142,-0.0018234935123473406,0.008151134476065636,0.049622874706983566,0.018184566870331764,-0.007438826374709606,-0.06772993505001068,0.0016479900805279613,0.016313103958964348,-0.01838725246489048,-0.002810437697917223,-0.008299310691654682,0.0021590180695056915,-0.07658176869153976,-0.052365776151418686,-0.0046624112874269485,-0.019321279600262642,-0.05388221889734268,-0.006629584822803736,0.10689274966716766,0.05511053279042244,-0.022639039903879166,0.035971011966466904,0.08532299101352692,-0.029289506375789642,-0.03065607137978077,0.028966661542654037,-0.02942272648215294,-0.03957923874258995,0.03224382549524307,0.018050478771328926,0.032970454543828964,0.05030900239944458,-0.041838958859443665,0.024229686707258224,0.057461854070425034,-0.02769048698246479,-0.08287783712148666,-0.013447163626551628,-0.02488953061401844,-0.0425758957862854,-0.012551549822092056,-0.04819975793361664,0.008644652552902699,0.022290777415037155,-0.011933647096157074,0.009241824969649315,0.062280043959617615,0.04031931608915329,0.001838891999796033,0.014451868832111359,0.05482003092765808,-0.008294470608234406,-0.023700769990682602,0.03858468681573868,-0.023084208369255066,0.034360695630311966,0.028466977179050446,0.007224178873002529,0.029080070555210114,-0.03933968394994736,0.03940221667289734,0.03889504820108414,0.04564525932073593,0.0435170978307724,-0.04239299148321152,-0.01216538343578577,-0.004489195998758078]) AS d
LIMIT 5;

# Caso de uso 2: Buscar secciones relevantes para el vector de incrustación proporcionado

Como se muestra a continuación, la declaración de SQL en este escenario utiliza el vector de incrustación para buscar secciones que cumplan las siguientes condiciones:

  • Estas secciones deben estar relacionadas con el vector de incrustación de consulta
  • El usuario es "default" o "test"
  • Los resultados de la consulta se reordenan según las palabras clave de los documentos desensamblados, combinando la potencia de los vectores y las palabras clave para una recuperación más precisa.
SELECT content, section, page, temp_t.title AS title, temp_t.pdf AS pdf 
FROM (
    SELECT content, section, page, title, pdf
    FROM chatPDF 
    JOIN chatPDF_meta ON chatPDF_meta.pdf = chatPDF.pdf 
    WHERE pdf IN (
        SELECT pdf FROM chatPDF_user
        JOIN chatPDF_meta ON chatPDF_user.pdf = chatPDF_meta.pdf
        WHERE user IN ('test', 'default')
        )
    GROUP BY content, section, page, d, title, pdf
    ORDER BY distance(chatPDF.vector, [-0.028602387756109238,0.05193805322051048,-0.031317807734012604,-0.028051884844899178,0.09304523468017578,-0.012233047746121883,0.013670934364199638,-0.058627404272556305,0.016324086114764214,0.024056825786828995,-0.007964950986206532,-0.015832604840397835,0.0465020053088665,0.05120447650551796,-0.011173561215400696,-0.008055370301008224,-0.06142625957727432,0.03517622500658035,-0.058551665395498276,-0.01308200042694807,-0.007963517680764198,0.03235742449760437,0.025468328967690468,-0.026939349249005318,0.06110360845923424,0.01686902903020382,-0.04319953918457031,0.09188768267631531,-0.022290648892521858,0.055751387029886246,-0.013135429471731186,0.008576076477766037,0.059156663715839386,0.041759055107831955,0.02573470026254654,-0.056330692023038864,-0.018969712778925896,-0.0617007240653038,-0.023090023547410965,-0.016790034249424934,0.01975618675351143,-0.020167330279946327,-0.02554931864142418,-0.0015003907028585672,0.007852326147258282,0.0541803352534771,-0.007227180525660515,-0.03331175819039345,0.0055015478283166885,0.02638649381697178,0.01572638750076294,0.0554802380502224,0.0860990360379219,-0.009892038069665432,0.0006325682043097913,-0.00466573890298605,-0.07239983975887299,-0.054198142141103745,-0.0315401628613472,-0.01702083647251129,-0.028342323377728462,0.0047926888801157475,0.011463815346360207,-0.024098187685012817,0.027457818388938904,0.02334539219737053,-0.009983752854168415,-0.0633431002497673,-0.06647104769945145,-0.06046867370605469,-0.07855461537837982,0.03323746845126152,-0.12926268577575684,0.014088059775531292,-0.031514447182416916,-0.025199050083756447,0.005245922598987818,-0.029317660257220268,0.04884430393576622,0.012645414099097252,-0.01832539215683937,-0.0046740262769162655,0.055797673761844635,0.0046990374103188515,0.027943402528762817,0.055492889136075974,-0.012013912200927734,0.018530962988734245,-0.020475702360272408,-0.03987526893615723,-0.009115397930145264,-0.0242095235735178,0.07148326933383942,0.002836561528965831,0.011758368462324142,0.010632219724357128,0.07038570195436478,-0.030432313680648804,0.002112780697643757,-0.003160921623930335,-0.06508484482765198,-0.010381905362010002,-0.023127656430006027,0.01196929533034563,0.010409880429506302,-0.08278219401836395,0.03462051600217819,-0.003167665097862482,-0.08831408619880676,-0.013079256750643253,-0.0013668457977473736,-0.034809526056051254,-0.030371399596333504,-0.031348817050457,-0.02590388059616089,-0.021449672058224678,0.03770831599831581,0.08849338442087173,0.010925468988716602,-0.009033727459609509,-0.020753415301442146,-0.01770271360874176,-0.017846258357167244,-0.0035869968123733997,-0.021489502862095833,0.045604851096868515,-0.013902788050472736,-0.0384070985019207,-0.03368276357650757,0.04123971238732338,0.0018785643624141812,0.06104699522256851,-0.03108287788927555,-0.0037539778277277946,-0.03130106255412102,-0.024152100086212158,-0.02726845070719719,0.004191273357719183,-0.05925445258617401,0.0742005705833435,-0.06772784888744354,-0.006988621316850185,-0.03191212937235832,0.02903582714498043,0.01989048160612583,0.09483784437179565,-0.04168536886572838,0.025414111092686653,0.03742283955216408,0.05055548623204231,0.0026791745331138372,0.03570197895169258,-0.0012597993481904268,0.009046895429491997,0.030189141631126404,-0.04691040888428688,-0.0009548828820697963,0.01596323400735855,0.07529480755329132,0.08409800380468369,-0.06255559623241425,-0.005675397347658873,-0.039521511644124985,0.052339985966682434,0.03254899010062218,0.015361281111836433,0.058702316135168076,0.009377162903547287,0.08463673293590546,0.011505217291414738,0.05275140702724457,0.019933659583330154,0.009439929388463497,-0.007302085869014263,-0.0043915980495512486,-0.03271979093551636,0.017273275181651115,-0.01740737073123455,0.018746431916952133,-0.00824034120887518,0.07812781631946564,-0.0384545624256134,-0.0424121618270874,0.07000716775655746,0.011353518813848495,0.04983452707529068,-0.015417062677443027,-0.004711403977125883,-0.04050220176577568,-0.0546519011259079,-0.010305394418537617,0.04194115102291107,0.008575938642024994,0.021970907226204872,0.053986597806215286,0.03271383047103882,-0.009459379129111767,-0.02329881116747856,0.0792340561747551,0.03156689554452896,-0.07657361775636673,-0.01969241164624691,0.07950250059366226,0.02582576498389244,0.03393377736210823,0.03178403154015541,-0.04218177869915962,0.01007103081792593,-0.007927320897579193,-0.027992310002446175,0.0805586576461792,-0.02275105006992817,0.0019749384373426437,0.020015651360154152,-0.02570357732474804,-0.024672288447618484,0.049746956676244736,0.019401296973228455,-0.014245196245610714,0.02062692493200302,-0.031854745000600815,-0.0027649407275021076,-0.0020269006490707397,-0.038350436836481094,0.0015580937033519149,-0.015934618189930916,0.011462862603366375,-0.02152520976960659,-0.022145027294754982,0.00734312366694212,0.03794105723500252,-0.03129032254219055,-0.010872636921703815,0.013028818182647228,0.013146125711500645,-0.001660099602304399,0.00029317382723093033,0.018063941970467567,0.009409281425178051,-0.016657380387187004,0.026886843144893646,-0.010345596820116043,0.0278768390417099,0.010111561045050621,-0.036829929798841476,-0.04345128312706947,-0.08976473659276962,0.04493587464094162,0.028010740876197815,-0.03416436165571213,0.023581236600875854,0.02721460536122322,0.02870713174343109,0.0486646443605423,0.03549840673804283,-0.055571019649505615,-0.020705128088593483,0.019123468548059464,-0.024551449343562126,0.0696345865726471,0.02460857294499874,-0.057880476117134094,-0.022359278053045273,-0.034049905836582184,-0.06536795198917389,-0.03331594914197922,-0.003080692607909441,0.027616700157523155,-0.04753870889544487,0.016564052551984787,-0.060747019946575165,-0.033646680414676666,0.03772412985563278,0.0007252924842759967,-0.04008457437157631,-0.007883877493441105,0.03680732473731041,-0.009088178165256977,0.025094570592045784,0.0027452725917100906,0.007728055119514465,-0.006499788723886013,0.03094450943171978,0.03458185866475105,0.006452739238739014,-0.060986150056123734,-0.023363333195447922,0.0022187596186995506,0.06034814938902855,0.008435722440481186,0.0015066927298903465,-0.012030326761305332,-0.04852339252829552,0.09226252138614655,0.019318904727697372,0.019926346838474274,0.031246166676282883,-0.015020517632365227,0.005295108072459698,-0.05487625300884247,0.01943211816251278,-0.0065069072879850864,-0.005782572086900473,0.03127134591341019,0.036789581179618835,-0.0021005230955779552,-0.006595696322619915,0.09886176139116287,0.044642094522714615,0.008776228874921799,-0.06613229960203171,-0.09778912365436554,0.04855702817440033,-0.019823754206299782,0.05024749040603638,0.05649179592728615,-0.060693010687828064,0.05163635313510895,-0.010757084004580975,0.06527445465326309,0.011550993658602238,-0.0006965601351112127,0.019896207377314568,-0.018262844532728195,0.06802519410848618,-0.01982499286532402,-0.013756493106484413,-0.01080138050019741,-0.0007239197148010135,0.0019289625342935324,0.013325190171599388,-0.039237406104803085,0.07574980705976486,0.011901366524398327,0.01575469598174095,-0.016088636592030525,-0.04486628249287605,0.04137108847498894,-0.014687441289424896,-0.04507390037178993,-0.08581030368804932,-0.007651266176253557,-0.02012077160179615,0.030385226011276245,-0.027815770357847214,0.055400848388671875,-0.015418179333209991,0.00169078866019845,-0.008691568858921528,0.02365257404744625,0.013552607037127018,0.018333865329623222,0.029841255396604538,-0.018621621653437614,-0.010539400391280651,0.008913171477615833,-0.002017852384597063,-0.0025873517151921988,-0.05953807011246681,0.00825919397175312,0.034610796719789505,-0.016277987509965897,-0.006498720962554216,-0.024549007415771484,-0.011766843497753143,0.018465928733348846,0.0034142436925321817,0.008967841044068336,-0.008319002576172352,-0.03201327845454216,-0.026722850278019905,-0.01684730313718319,-0.009930165484547615,-0.00018909515347331762,-0.010824637487530708,0.00852691289037466,0.026722438633441925,0.039784424006938934,0.011125900782644749,-0.006381566170603037,-0.014115390367805958,0.00244533852674067,0.05720775946974754,-0.028283527120947838,0.0358721986413002,0.047634437680244446,0.08459443598985672,0.02213694341480732,-0.017319083213806152,-0.05709897726774216,0.07799524068832397,-0.018437424674630165,0.036587849259376526,-0.01116589643061161,-0.03918002173304558,0.012297233566641808,-0.05485652759671211,0.0007847997476346791,-0.03045291267335415,0.026051536202430725,-0.004062032327055931,-0.005013444926589727,-0.04919704422354698,-0.05441347137093544,-0.02954081818461418,-0.029185811057686806,-0.03374828025698662,-0.02701537497341633,-0.02051454409956932,-0.01822960563004017,0.023751920089125633,-0.005654079373925924,-0.06160213053226471,-0.046936020255088806,0.021633923053741455,-0.02495487593114376,-0.0015039177378639579,-0.0051044500432908535,-0.022187741473317146,-0.034528106451034546,0.03416862338781357,0.032588254660367966,0.01145924348384142,-0.04730336368083954,-0.0029300148598849773,0.03436218574643135,-0.0261283740401268,-0.03162160515785217,-0.05312611535191536,0.005359994247555733,0.029726408421993256,0.03818337619304657,0.018482066690921783,0.00817812792956829,0.006548972800374031,-0.0578656941652298,0.014239479787647724,0.029399987310171127,0.002749588806182146,-0.02178371138870716,-0.07573916018009186,-0.021304957568645477,0.04327695444226265,-0.008249565027654171,0.016941362991929054,0.02107137255370617,0.024265944957733154,-0.006902314256876707,0.039750199764966965,0.014925206080079079,-0.08287150412797928,-0.04848889261484146,0.01919567957520485,0.02647663839161396,0.03438766300678253,-0.05986958369612694,-0.03709588199853897,-0.11452722549438477,-0.036673933267593384,-0.008246892131865025,-0.07221311330795288,-0.0735122561454773,-0.02042395807802677,0.018186723813414574,0.002861814806237817,-0.005009822081774473,-0.07307695597410202,-0.03611520677804947,0.026176802814006805,0.009307770989835262,0.0312464889138937,-0.024423643946647644,-0.004277748521417379,0.006169045809656382,0.07744313776493073,-0.030859921127557755,0.0008700981270521879,0.00243563624098897,-0.07085950672626495,-0.05762483924627304,-0.011360583826899529,-0.030241122469305992,0.015516492538154125,0.020868854597210884,0.02939927577972412,-0.030372491106390953,-0.06916476786136627,0.010707120411098003,-0.02807154878973961,-0.008762502111494541,-0.0034118774347007275,0.027162129059433937,-0.0616542249917984,0.03941693902015686,0.013875571079552174,0.049216143786907196,0.041300106793642044,-0.08846136182546616,0.056695155799388885,-0.03506137430667877,-0.021880896762013435,-0.018869969993829727,0.007139734458178282,0.023009536787867546,-0.010022856295108795,-0.025198865681886673,0.015322377905249596,0.04815468192100525,0.02825315110385418,-0.0006994997384026647,-0.03493428975343704,0.006141179241240025]) AS d
    LIMIT 20
) temp_t
JOIN chatPDF_meta ON temp_t.pdf = chatPDF_meta.pdf
ORDER BY log(1 + countMatches(arrayStringConcat([abstract, content, title], ' '), '(?i)(solid-state|electrolyte)')+1) AS d DESC
LIMIT 5;

# Notas

Los siguientes puntos se aplican al utilizar MyScale para consultas conjuntas de SQL y vectores:

  1. Puedes utilizar el patrón de consulta distance()...ORDER BY...LIMIT en subconsultas que utilizan índices vectoriales. Cuando MyScale detecta este patrón y una tabla involucrada en la subconsulta tiene columnas vectoriales con índices vectoriales, utilizará los índices vectoriales para acelerar la consulta. En ClickHouse, la cláusula ORDER BY puede aparecer no solo en la consulta más externa.

  2. MyScale es una base de datos columnar, por lo que los resultados de la consulta idealmente solo deben incluir columnas esenciales. Las columnas no esenciales no deben aparecer en la cláusula SELECT y se debe evitar SELECT * para mejorar la velocidad de la consulta.

Last Updated: Fri Nov 01 2024 09:38:04 GMT+0000